11,301 research outputs found

    Adversarial Network Bottleneck Features for Noise Robust Speaker Verification

    Full text link
    In this paper, we propose a noise robust bottleneck feature representation which is generated by an adversarial network (AN). The AN includes two cascade connected networks, an encoding network (EN) and a discriminative network (DN). Mel-frequency cepstral coefficients (MFCCs) of clean and noisy speech are used as input to the EN and the output of the EN is used as the noise robust feature. The EN and DN are trained in turn, namely, when training the DN, noise types are selected as the training labels and when training the EN, all labels are set as the same, i.e., the clean speech label, which aims to make the AN features invariant to noise and thus achieve noise robustness. We evaluate the performance of the proposed feature on a Gaussian Mixture Model-Universal Background Model based speaker verification system, and make comparison to MFCC features of speech enhanced by short-time spectral amplitude minimum mean square error (STSA-MMSE) and deep neural network-based speech enhancement (DNN-SE) methods. Experimental results on the RSR2015 database show that the proposed AN bottleneck feature (AN-BN) dramatically outperforms the STSA-MMSE and DNN-SE based MFCCs for different noise types and signal-to-noise ratios. Furthermore, the AN-BN feature is able to improve the speaker verification performance under the clean condition

    Readability Formulas and User Perceptions of Electronic Health Records Difficulty: A Corpus Study

    Get PDF
    BACKGROUND: Electronic health records (EHRs) are a rich resource for developing applications to engage patients and foster patient activation, thus holding a strong potential to enhance patient-centered care. Studies have shown that providing patients with access to their own EHR notes may improve the understanding of their own clinical conditions and treatments, leading to improved health care outcomes. However, the highly technical language in EHR notes impedes patients\u27 comprehension. Numerous studies have evaluated the difficulty of health-related text using readability formulas such as Flesch-Kincaid Grade Level (FKGL), Simple Measure of Gobbledygook (SMOG), and Gunning-Fog Index (GFI). They conclude that the materials are often written at a grade level higher than common recommendations. OBJECTIVE: The objective of our study was to explore the relationship between the aforementioned readability formulas and the laypeople\u27s perceived difficulty on 2 genres of text: general health information and EHR notes. We also validated the formulas\u27 appropriateness and generalizability on predicting difficulty levels of highly complex technical documents. METHODS: We collected 140 Wikipedia articles on diabetes and 242 EHR notes with diabetes International Classification of Diseases, Ninth Revision code. We recruited 15 Amazon Mechanical Turk (AMT) users to rate difficulty levels of the documents. Correlations between laypeople\u27s perceived difficulty levels and readability formula scores were measured, and their difference was tested. We also compared word usage and the impact of medical concepts of the 2 genres of text. RESULTS: The distributions of both readability formulas\u27 scores (P \u3c .001) and laypeople\u27s perceptions (P=.002) on the 2 genres were different. Correlations of readability predictions and laypeople\u27s perceptions were weak. Furthermore, despite being graded at similar levels, documents of different genres were still perceived with different difficulty (P \u3c .001). Word usage in the 2 related genres still differed significantly (P \u3c .001). CONCLUSIONS: Our findings suggested that the readability formulas\u27 predictions did not align with perceived difficulty in either text genre. The widely used readability formulas were highly correlated with each other but did not show adequate correlation with readers\u27 perceived difficulty. Therefore, they were not appropriate to assess the readability of EHR notes

    Assessing the Readability of Medical Documents: A Ranking Approach

    Get PDF
    BACKGROUND: The use of electronic health record (EHR) systems with patient engagement capabilities, including viewing, downloading, and transmitting health information, has recently grown tremendously. However, using these resources to engage patients in managing their own health remains challenging due to the complex and technical nature of the EHR narratives. OBJECTIVE: Our objective was to develop a machine learning-based system to assess readability levels of complex documents such as EHR notes. METHODS: We collected difficulty ratings of EHR notes and Wikipedia articles using crowdsourcing from 90 readers. We built a supervised model to assess readability based on relative orders of text difficulty using both surface text features and word embeddings. We evaluated system performance using the Kendall coefficient of concordance against human ratings. RESULTS: Our system achieved significantly higher concordance (.734) with human annotators than did a baseline using the Flesch-Kincaid Grade Level, a widely adopted readability formula (.531). The improvement was also consistent across different disease topics. This method\u27s concordance with an individual human user\u27s ratings was also higher than the concordance between different human annotators (.658). CONCLUSIONS: We explored methods to automatically assess the readability levels of clinical narratives. Our ranking-based system using simple textual features and easy-to-learn word embeddings outperformed a widely used readability formula. Our ranking-based method can predict relative difficulties of medical documents. It is not constrained to a predefined set of readability levels, a common design in many machine learning-based systems. Furthermore, the feature set does not rely on complex processing of the documents. One potential application of our readability ranking is personalization, allowing patients to better accommodate their own background knowledge

    Charge modulation as fingerprints of phase-string triggered interference

    Get PDF
    Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high TcT_c cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock type mean field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t−Jt-J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.Comment: 14 pages, 10 figures. Comments on a followup paper by S. R. White, D. J. Scalapino, and S. A. Kivelson (arXiv:1502.04403) adde

    Study on evaluation of International Science and Technology Cooperation Project (ISTCP) in China

    Get PDF
    This paper presents an overview of evaluation of ISTCP in China. We discuss briefly the history of evaluation and the strengths and weaknesses of different assessment systems. On this basis, with Analytical Hierarchy Process (AHP), we establish evaluation indicator system for ISTCP that includes research project establishment evaluation, mid-period evaluation system, effect evaluation system, and confirm the value of each indicator. At the same time, we established expert database, project database, research organization database, researcher database etc. We therefore establish an evaluation platform for international science and technology cooperation project. We use it to realize full process supervision from evaluation expert selection to project management
    • …
    corecore